1-((2,4-Dichlorophenethyl)Amino)-3-Phenoxypropan-2-ol Kills Pseudomonas aeruginosa through Extensive Membrane Damage
نویسندگان
چکیده
The ever increasing multidrug-resistance of clinically important pathogens and the lack of novel antibiotics have resulted in a true antibiotic crisis where many antibiotics are no longer effective. Further complicating the treatment of bacterial infections are antibiotic-tolerant persister cells. Besides being responsible for the recalcitrant nature of chronic infections, persister cells greatly contribute to the observed antibiotic tolerance in biofilms and even facilitate the emergence of antibiotic resistance. Evidently, eradication of these persister cells could greatly improve patient outcomes and targeting persistence may provide an alternative approach in combatting chronic infections. We recently characterized 1-((2,4-dichlorophenethyl)amino)-3-phenoxypropan-2-ol (SPI009), a novel anti-persister molecule capable of directly killing persisters from both Gram-negative and Gram-positive pathogens. SPI009 potentiates antibiotic activity in several in vitro and in vivo infection models and possesses promising anti-biofilm activity. Strikingly, SPI009 restores antibiotic sensitivity even in resistant strains. In this study, we investigated the mode of action of this novel compound using several parallel approaches. Genetic analyses and a macromolecular synthesis assays suggest that SPI009 acts by causing extensive membrane damage. This hypothesis was confirmed by liposome leakage assay and membrane permeability studies, demonstrating that SPI009 rapidly impairs the bacterial outer and inner membranes. Evaluation of SPI009-resistant mutants, which only could be generated under severe selection pressure, suggested a possible role for the MexCD-OprJ efflux pump. Overall, our results demonstrate the extensive membrane-damaging activity of SPI009 and confirm its clinical potential in the development of novel anti-persister therapies.
منابع مشابه
Antibacterial Activity of 1-[(2,4-Dichlorophenethyl)amino]-3-Phenoxypropan-2-ol against Antibiotic-Resistant Strains of Diverse Bacterial Pathogens, Biofilms and in Pre-clinical Infection Models
We recently described the novel anti-persister compound 1-[(2,4-dichlorophenethyl)amino]-3-phenoxypropan-2-ol (SPI009), capable of directly killing persister cells of the Gram-negative pathogen Pseudomonas aeruginosa. This compound also shows antibacterial effects against non-persister cells, suggesting that SPI009 could be used as an adjuvant for antibacterial combination therapy. Here, we dem...
متن کاملReduction and Acetylation of 2,4-Dinitrotoluene by a Pseudomonas aeruginosa Strain.
Aerobic and anoxic biotransformation of 2,4-dinitrotoluene (DNT) was examined by using a Pseudomonas aeruginosa strain isolated from a plant treating propellant manufacturing wastewater. DNT biotransformation in the presence and absence of oxygen was mostly reductive and was representative of the type of cometabolic transformations that occur when a high concentration of an easily degradable ca...
متن کاملAmino components of the lipopolysaccharide from Pseudomonas aeruginosa N.C.T.C. 8505. Presence of 2,4-diamino-2,4,6-trideoxy-D-glucose.
Configurations were determined for previously identified amino components of the lipopolysaccharide from Pseudomonas aeruginosa N.C.T.C. 8505. Glucosamine and galactosamine belong to the D-series, and alanine and aminogalacturonic acid to the L-series. An additional amino component was identified as 2,4-diamino-2,4,6-trideoxy-D-glucose. This compound may be a characteristic component of the O-s...
متن کاملOxidation of D- and L-valine by enzymes of Pseudomonas aeruginosa.
Norton, J. E. (University of Oklahoma School of Medicine, Oklahoma City), and J. R. Sokatch. Oxidation of d- and l-valine by enzymes of Pseudomonas aeruginosa. J. Bacteriol. 92:116-120. 1966.-Cell-free extracts prepared from Pseudomonas aeruginosa grown on dl-valine catalyzed the consumption of oxygen with several d-amino acids, but not with the corresponding l-amino acids. The product of d-val...
متن کاملTNT biotransformation and detoxification by a <i>Pseudomonas aeruginosa</i> strain
Successful microbial-mediated remediation requires transformation pathways that maximize metabolism and minimize the accumulation of toxic products. Pseudomonas aeruginosa strain MX, isolated from munitionscontaminated soil, degraded 100 mg TNT L−1 in culture medium within 10 h under aerobic conditions. The major TNT products were 2-amino-4,6-dinitrotoluene (2ADNT, primarily in the supernatant)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2018